Terhangat
Loading...

Aturan Sinus

Aturan sinus berbunyi bahwa perbandingan panjang sisi sebuah segitiga dengan sinus sudut yang menghadapnya memiliki nilai yang sama.

Lebih jelasnya pada gambar dibawah ini

Aturan Sinus
Keterangan

A = besar sudut di hadapan sisi a
a = panjang sisi a
B = besar sudut di hadapan sisi b
b = panjang sisi b
C = besar sudut di hadapan sisi c
c = panjang sisi c
AP ┴ BC
BQ ┴ AC
CR ┴ AB

Perhatikan segitiga ACR

Sin A = CR/b  maka CR = b sin A …(1)

Perhatikan segitiga BCR

Sin B = CR/a  maka CR = a sin B …. (2)

Perhatikan segitiga ABP

Sin B = AP/c  maka AP = c sin B … (3)

Perhatikan segitiga APC

Sin C = AP/b  maka AP = b sin C …(4)

Berdasarkan persamaan (1) dan (2) didapat

CR = b sin A = a sin B maka a/sin A = b/sin B …(5)

Berdasarkan persamaan (3) dan (4) didapat

AP = c sin B = b sin C maka b/sin B = c/sin C …(6)

Kemudian, berdasarkan persamaan (5) dan (6) diperoleh

 a/sin A = b/sin B = c/sin C

Persamaan ini yang kemudian disebut dengan aturan sinus.


Contoh Soal Aturan Sinus
1. Andi sedang mengukur mainan segitiganya yang tiap sudutnya dikodekan dengan A, B, dan C, kemudian diketahui segitiga tersebut memiliki sudut A = 30º, sisi a = 6cm dan sisi b = 8cm. Hitung besar sudut B!

Pembahasan

Akan dicari besar sudut B

sin B = (b sin A)/a

sin B = 8/6 sin 30̊

sin B = 2/3

B = arc sin B

B = arc sin (2/3)

B = 41,8̊

Jadi, besar sudut B adalah 41,8̊ atau 180̊ – 41,8̊ = 138,2̊


2. Sebuah segitiga ABC memiliki panjang AC = 4 cm. Jika besar ∠ ABC = 60º dan ∠BAC = 30º, maka panjang BC = … cm.

Pembahasan

AC/sin ∠ABC = BC/sin∠BAC

4cm/sin 60 = BC/sin30

4cm/½√3 = BC/½

BC = ½ × 4cm/½√3

BC = 4cm/√3

BC = 4/3 √3 cm

Jadi, panjang BC adalah BC4/3 √3cm.

3. Diketahui sebuah segitiga ABC dengan panjang AB = 9cm dan BC = 12cm. Jika besar ∠ ABC = 30º, tentukan luas segitiga ABC!

Pembahasan

L = ½ a t


  • Misal a = AB, maka t adalah garis tegak lurus AB ke titik C berhadapan dengan ∠ ABC, maka

Sin ∠ABC = t/BC

t = BC × Sin ∠ABC

Sehingga diperoleh

L = ½ a t

L = ½ × AB × BC × Sin ∠ABC

L = ½ × 9cm × 12cm × Sin 30o

L = ½ × 9cm × 12cm × ½

L = 27cm2


  • Misal a = BC, maka t adalah garis tegak lurus BC ke titik A berhadapan dengan ∠ ABC, maka

Sin ∠ABC = t/AB

t = AB × Sin ∠ABC

Sehingga diperoleh

L = ½ a t

L = ½ × BC × AB × Sin ∠ABC

L = ½ × 12cm × 9cm × Sin 30o

L = ½ × 12cm × 9cm × ½

L = 27cm2

Jadi,  luas segitiga ABC adalah 27cm2.

4. Diketahui sebuah segitiga PQR memiliki luas sebesar 96cm2. Jika panjang PR = 12cm dan besar ∠PRQ = 60º, tentukan panjang QR!

Pembahasan

L = ½ × PR × QR × Sin ∠PRQ

96cm2 = ½ × 12cm × QR × Sin 60o

96cm2 = ½ × 12cm × QR × ½√3

96cm2 = 4√3cm × QR

QR = 96cm2 ÷ 4√3cm

QR = 24/√3 cm

QR = 8√3cm

Jadi, panjang QR adalah 8√3cm.

5. Sebuah segitiga XYZ memiliki panjang XZ = 6cm dan YZ = 2√3cm. Jika besar ∠ XYZ = 60º, tentukan besar ∠YXZ !

Pembahasan

XZ/sin ∠XYZ = YZ/sin∠YXZ

6cm/sin 60 = 2√3cm/sin∠YXZ

6cm/½√3 = 2√3cm/sin∠YXZ

sin∠YXZ = 2√3cm × ½√3 ÷ 6cm

sin∠YXZ = 3/6

sin∠YXZ = ½

YXZ = arc sin (½)

YXZ = 30º

Jadi, besar ∠YXZ adalah 30º.

6. Diketahui sebuah segitiga ABC memiliki luas sebesar 6cm2. Jika panjang AB = 3cm dan BC = 4cm, tentukan besar ∠ABC!

pembahasan

L = ½ × AB × BC × Sin ∠ABC

6cm2 = ½ × 3cm × 4cm × Sin ∠ABC

6cm2 = 6cm2 × Sin ∠ABC

Sin ∠ABC = 1

ABC = arc sin (1)

ABC = 90º

Jadi, besar ∠ABC adalah 90º.
HALAMAN SELANJUTNYA:

iklan banner

Previous
Next Post »
Thanks for your comment
close